Excitotoxicity has been implicated in several ischemic diseases of the retina, including retinal vessel occlusion and diabetic retinopathy. Glutamate signaling mediated through the N-methyl-D-aspartate (NMDA) receptor contributes to ischemic cell death. The NMDA receptor antagonists MK-801 and memantine have substantial neuroprotective effects in experimental retinal disease models, but the mechanisms by which NMDA receptor activity leads to cell death is not clear. Here we describe a previously unknown role for retinal glial cells in NMDA-induced retinal injury that involves the activation of ERK1/2. Within 1 hr after injecting NMDA intravitreally, activation of ERK1/2 and c-Fos induction were observed in retinal Müller cells. The roles of activated ERK1/2 in neuronal damage were examined using ERK1 gene deficient mice (homozygous ERK1(-/-) mice). NMDA-induced ERK1/2 activation in retina was significantly suppressed in ERK1(-/-) mice, and these mice had significantly higher numbers of TUNEL-positive retinal cells than wild-type mice 24 hr after NMDA injection. These data suggest that, during NMDA injury, Müller cells are activated and play a protective role against NMDA-induced retinal cell death. ERK1 appears to play a major role in this process. These new findings on retinal glial cell response during NMDA injury offer an important new therapeutic target for preventing many retinal disorders associated with excitotoxicity.