In vertebrates, the Rho family of GTPases is made of 20 members which regulate a variety of cellular functions, including actin cytoskeleton dynamics, cell adhesion and motility, cell growth and survival, gene transcription and membrane trafficking. To get a comprehensive view of Rho implication in physiological epithelial-mesenchymal transition, we carried out an in situ hybridization-based screen to identify Rho members expressed in Xenopus neural crest cells, in which we previously reported RhoB expression at the migrating stage. In the present study, we identify RhoV as an early expressed neural crest marker and provide evidence that its activity is essential for neural crest cell induction. RhoV mRNA is maternally expressed and accumulates shortly after gastrulation in the neural crest forming region. Using antisense morpholino injection, we show that at neurula stages, RhoV depletion impairs expression of the neural crest markers Sox9, Slug or Twist but has no effect on Snail induction. At the tailbud stage, RhoV knockdown causes a dramatic loss of cranial neural crest derived structures. All these defects are rescued by ectopic wild-type RhoV, whose overexpression on its own expands the neural crest territory. Our findings disclose an unprecedented Rho function in pathways that control neural crest cells specification.