Chronic lymphocytic leukemia (CLL) is characterized by survival advantage and accumulation of CD5+ mature B lymphocytes. Expression of zeta-chain-associated protein-70 (ZAP-70), normally present in T lymphocytes or immature B cells, is associated with disease aggressiveness, as IgVH mutational status, and some proteins implicated in survival signal pathways are found to be constitutively activated in CLL cells. ZAP-70 signaling is regulated through molecular adaptors, such as the proto-oncogene product c-Casitas B lineage lymphoma (c-Cbl). The aim of this study was to determine the implication of this proto-oncogene product in CLL in survival signals. It appeared that expression of c-Cbl was increased in CLL and not correlated to that of B cell linker protein or ZAP-70. Furthermore, c-Cbl was significantly hypophosphorylated in progressive disease, so that hypophosphorylated form of c-Cbl (c-Cbl.P) along with ZAP-70, set a cutoff ratio distributing patients with stable situation below 1, and those with progressive disease equal or above 1. Given that phospholipase gamma 2 (PLC gamma 2) function is also influenced by c-Cbl hypophosphorylation, the ratio of PLC gamma 2 to c-Cbl.P was measured in CLL B cells and consistently found to be >or= 1 in Binet stage B CLL patients, as opposed to stage A CLL patients. These findings invite analysis of the role of c-Cbl in CLL.