Previous studies have shown that metabolic information provided by 3D Magnetic Resonance Spectroscopy Imaging (MRSI) could affect the definition of target volumes for radiation treatments (RT). This study aimed to (i) investigate the effect of incorporating spectroscopic volumes as determined by MRSI on target volume definition, patient selection eligibility, and dose prescription for stereotactic radiosurgery treatment planning; (ii) correlate the spatial extent of pre-SRS spectroscopic abnormality and treatment volumes with areas of focal recurrence as defined by changes in contrast enhancement; and (iii) examine the metabolic changes following SRS to assess treatment response. Twenty-six patients treated with Gamma Knife radiosurgery for recurrent glioblastoma multiforme (GBM) were retrospectively evaluated. All patients underwent both MRI and MRSI studies prior to SRS. Follow-up MRI exams were available for all 26 patients, with MRI/MRSI available in only 15/26 patients. We observed that the initial CNI 2 contours extended beyond the pre-SRS CE in 25/26 patients ranging in volume from 0.8 cc to 18.8 cc (median 5.6 cc). The inclusion of the volume of CNI 2 extending beyond the CE would have increased the SRS target volume by 5-165% (median 23.4%). This would have necessitated decreasing the SRS prescription dose in 19/26 patients to avoid increased toxicity; the resultant treatment volume would have exceeded 20cc in five patients, thus possibly excluding those from RS treatment per our institutional practice. MRSI follow-up studies showed a decrease in Choline, stable Creatine, and increased NAA indicative of response to SRS in the majority of patients. When combined with patient survival data, metabolic information obtained during follow-up MRSI studies seemed to indicate the potential to help to distinguish necrosis from new/recurrent tumor; however, this should be further verified by biopsy studies.