Seizures induced by fever (febrile seizures) are the most common type of pathological brain activity in infants and children. These febrile seizures and their potential contribution to the mechanisms of limbic (temporal lobe) epilepsy have been a topic of major clinical and scientific interest. Key questions include the mechanisms by which fever generates seizures, the effects of long febrile seizures on neuronal function and the potential contribution of these seizures to epilepsy. This review builds on recent advances derived from animal models and summarizes our current knowledge of the mechanisms underlying febrile seizures and of changes in neuronal gene expression and function that facilitate the enduring effects of prolonged febrile seizures on neuronal and network excitability. The review also discusses the relevance of these findings to the general mechanisms of epileptogenesis during development and points out gaps in our knowledge, including the relationship of animal models to human febrile seizures and epilepsy.