Propagated endothelial Ca2+ waves and arteriolar dilation in vivo: measurements in Cx40BAC GCaMP2 transgenic mice

Circ Res. 2007 Dec 7;101(12):1300-9. doi: 10.1161/CIRCRESAHA.107.149484. Epub 2007 Oct 11.

Abstract

To study endothelial cell (EC)- specific Ca(2+) signaling in vivo we engineered transgenic mice in which the Ca(2+) sensor GCaMP2 is placed under control of endogenous connexin40 (Cx40) transcription regulatory elements within a bacterial artificial chromosome (BAC), resulting in high sensor expression in arterial ECs, atrial myocytes, and cardiac Purkinje fibers. High signal/noise Ca(2+) signals were obtained in Cx40(BAC)-GCaMP2 mice within the ventricular Purkinje cell network in vitro and in ECs of cremaster muscle arterioles in vivo. Microiontophoresis of acetylcholine (ACh) onto arterioles triggered a transient increase in EC Ca(2+) fluorescence that propagated along the arteriole with an initial velocity of approximately 116 microm/s (n=28) and decayed over distances up to 974 microm. The local rise in EC Ca(2+) was followed (delay, 830+/-60 ms; n=8) by vasodilation that conducted rapidly (mm/s), bidirectionally, and into branches for distances exceeding 1 mm. At intermediate distances (300 to 600 microm), rapidly-conducted vasodilation occurred without changing EC Ca(2+), and additional dilation occurred after arrival of a Ca(2+) wave. In contrast, focal delivery of sodium nitroprusside evoked similar local dilations without Ca(2+) signaling or conduction. We conclude that in vivo responses to ACh in arterioles consists of 2 phases: (1) a rapidly-conducted vasodilation initiated by a local rise in EC Ca(2+) but independent of EC Ca(2+) signaling at remote sites; and (2) a slower complementary dilation associated with a Ca(2+) wave that propagates along the endothelium.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Arterioles / physiology*
  • Calcium Signaling / genetics*
  • Calcium Signaling / physiology
  • Calcium-Calmodulin-Dependent Protein Kinase Type 2 / genetics*
  • Calcium-Calmodulin-Dependent Protein Kinase Type 2 / physiology
  • Chromosomes, Artificial, Bacterial / genetics
  • Chromosomes, Artificial, Bacterial / physiology
  • Connexins / genetics*
  • Connexins / physiology
  • Endothelium, Vascular / physiology*
  • Gap Junction alpha-5 Protein
  • Intracellular Calcium-Sensing Proteins / genetics*
  • Intracellular Calcium-Sensing Proteins / physiology
  • Mice
  • Mice, Transgenic
  • Vasodilation / genetics*

Substances

  • Connexins
  • Intracellular Calcium-Sensing Proteins
  • Calcium-Calmodulin-Dependent Protein Kinase Type 2