Lipocalin allergens, which contain most of the important animal-derived respiratory sensitizers, induce T helper type 2 (Th2) deviation, but the reasons for this are not clear. To explore the prospects for peptide-based allergen immunotherapy and to elucidate the characteristics of the immunodominant epitope of Bos d 2, BALB/c mice were immunized with a peptide containing the epitope, peptides containing its analogues, peptides from the corresponding regions of other lipocalin proteins, and peptides with a homologous sequence. We observed that murine spleen cells recognized the immunodominant epitope of Bos d 2, p127-142, in almost the same way as human Bos d 2-specific T cells did. Enzyme-linked immunosorbent spot-forming cell assay (ELISPOT) analyses showed that p127-142 and a corresponding peptide from horse Equ c 1 induced a Th2-deviated cellular response, whereas a homologous bacterial peptide from Spiroplasma citri induced a Th0-type response. Interestingly, the spleen cell response to the bacterial peptide and p127-142 was cross-reactive, that is, able to induce reciprocally the proliferation and cytokine production of primed spleen cells in vitro. More importantly, the peptides were able to skew the phenotype of T cells primed with the other peptide. Our results suggest that modified peptides can be useful in allergen immunotherapy.