The PKB (protein kinase B) and PKC (protein kinase C) families display highly related catalytic domains that require a largely conserved series of phosphorylations for the expression of their optimum activities. However, in cells, the dynamics of these modifications are quite distinct. Based on experimental evidence, it is argued that the underlying mechanisms determining these divergent behaviours relate to the very different manner in which their variant regulatory domains interact with their respective catalytic domains. It is concluded that the distinct behaviours of PKB and PKC proteins are defined by the typical ground states of these proteins.