Learning from local knowledge: modeling the pastoral-nomadic range management of the Himba, Namibia

Ecol Appl. 2007 Oct;17(7):1857-75. doi: 10.1890/06-1193.1.

Abstract

It is widely accepted that successful grazing management strategies in semiarid ecosystems need to be adapted to the highly temporal and spatially heterogeneous forage production. Nevertheless, a full understanding of the key factors and processes for sustainable adaptive management has yet to be reached. The investigation of existing, successful range management systems by simulation models may help to derive general understanding and basic principles. The semi-nomadic Himba in northern Namibia applied a sophisticated management system until the mid-1990s which combined season-dependent pasture use (resulting in rainy-season pastures and dry-season pastures), preservation of reserves for drought and sanctions for rule breaking. A stochastic ecological simulation model has been developed here which represents the main aspects of this management system. With this model we analyze (1) which components of the traditional Himba strategy are essential for sustainability and (2) what happens to the state of the rangeland system under socioeconomic changes. This study shows that temporally and spatially heterogeneous pasture use yields higher productivity and quality of a pasture area than the pressure of homogeneous permanent grazing. Two aspects are of importance: (1) intra-annual heterogeneous use (resting of the dry-season pastures during the rainy season) and (2) interannual heterogeneous use (spatial extension of grazing in years of drought). This management system leads to an effective build-up and use of a buffer in the system: the reserve biomass (the non-photosynthetic reserve organs of the plants), an indicator for grazing and management history. Analyzing purchase as one form of socioeconomic change, we demonstrate that easier market access to purchase livestock may lead to a decline in vegetation quality. However, cattle production increases as long as rest periods on parts of the pasture during the rainy season are granted. Methodologically, we emphasize that simulation models offer an excellent framework for analyzing and depicting basic principles in sustainable range management derived from local knowledge. They provide the opportunity of testing whether these basic principles are also valid under different ecological and socioeconomic settings.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cattle
  • Conservation of Natural Resources*
  • Ecosystem*
  • Humans
  • Knowledge
  • Models, Theoretical*
  • Namibia
  • Poaceae
  • Rain
  • Transients and Migrants