Programmed cell death 4 gene (PDCD4), an in vivo repressor of transformation, was originally isolated from a human glioma library by screening it with an antibody against a nuclear antigen in proliferating cells. PDCD4 functions as a transformation repressor by inhibiting the activity of the RNA helicase, eIF4A. We previously showed that retinoids, anti-estrogens and HER2/neu antagonist induce PDCD4 expression in human breast cancer cell lines. Very little is known about the expression of PDCD4 in human breast cancer tissues or the significance of the PDCD4 expression in breast cancer. To gain insight into the pattern of the PDCD4 expression in breast tissues, we performed an immunohistochemical analysis of the PDCD4 expression in 80 archived, normal and ductal breast carcinoma tissues (invasive and carcinoma in situ) (DCIS) and correlated PDCD4 expression with expression of known prognostic markers in breast cancer (ER, PR and HER2/neu). To assess the role of methylation on PDCD4 expression in breast cancer cells, breast cancer cell lines were treated with the demethylating agent 5-deoxy-azacytidine and analyzed for PDCD4 expression. We observed primarily nuclear localization of PDCD4 in ductal carcinoma in situ compared to normal breast tissues where the PDCD4 expression was predominantly cytoplasmic. This was seen more frequently in DCIS cases that were ER positive and HER2/neu negative samples. PDCD4 expression was markedly decreased in the invasive ductal carcinoma. We did not observe any significant relationship between PDCD4 expression and the expression of RAR or PR. In T-47D, MDA-MB-435 and MDA-MB-231 cells, treatment with 5-deoxy-azacytidine did not result in an increased expression of PDCD4. The present study demonstrated altered cellular localization of PDCD4 when comparing normal breast to neoplastic breast tissues. In addition, there was a decreased expression of PDCD4 in breast cancer when compared with normal breast tissue. A loss of the PDCD4 expression in breast cancer cell lines does not appear to result from hypermethylation of the PDCD4 promoter.