Evaluate the bond strengths of denture base-repair materials to minimize recurrent failure rate. Use microtensile bond strength (muTBS) testing to evaluate the interfacial bonding strength of 6 commercial denture repair materials after 24-hour and 12-month soaking. Blocks of poly(methyl metacrylate) (PMMA) and Triad were fabricated, fractured, and repaired. Twenty bars (1 x 1 x 30 mm) per group were sectioned from each block parallel to the long axis and approximately 90 degrees to the resin-resin repair interface and stored before muTBS testing in a servo-hydraulic tensile-testing machine. Intact PMMA and Triad bars that had been soaked for 24 hours and 12 months were tested for reference. The 24-hour repair strengths for PMMA ranged from 52% to 84% of original strength. Soaking for 12 months resulted in a 20% decrease in strength for the PMMA control. The 12-month repair strengths for PMMA ranged from 43% to 74% of the 12-month soaked material strength. Triad repair tested 35% of original strength after soaking for 24 hours. Permabond (cyanoacrylate) to PMMA tested 47% of original strength after 24 hours of soaking and 26% of the 12-month soaked material strength. Permabond to Triad tested 30% of original strength after 24 hours of soaking. Permabond and Triad showed a 100% adhesive mode of failure. All other materials tested exhibited either an adhesive mode of failure at the denture base-repair-material interface or a complex cohesive failure within the repair-material interface. The muTBS approach can be used to analyze the resin-resin interface of repaired acrylics. The relatively small standard deviations make the muTBS approach attractive. In this study, muTBS was used to evaluate the repair strength of 6 denture repair materials enabling clinicians to make clinical judgments regarding the strongest repair bond available.