Factors affecting blood vessel lumen definition for two-dimensional and three-dimensional inflow magnetic resonance (MR) imaging methods are considered. Vessel definition is affected (a) by the amount of dephasing of the blood in the vessels, both for uncompensated and velocity-compensated gradients; (b) by the image reconstruction technique (normal Fourier reconstruction when asymmetric echoes are collected or a maximum-intensity projection technique in post-processing); (c) by loss of signal due to T2* dephasing; (d) by misregistration; (e) by vessel wall motion; and (f) by partial-volume effects. The first two factors were found to dominate for resolution on the order of 1 mm3. To overcome these dephasing problems, the authors developed asymmetric echo, velocity-compensated sequences with TEs as short as 4.8 msec. The data were then reconstructed with an iterative partial Fourier algorithm, enabling improved lumen definition to be obtained in phantoms and in vivo.