Objective: We evaluated the full range effects of FOXO3a in endothelial cells (ECs) by microarray analysis and investigated the role of FOXO3a regulating TNF receptor signaling pathway.
Methods and results: Human umbilical vein endothelial cells (HUVECs) were transfected with adenoviral vectors expressing constitutively active FOXO3a (Ad-TM-FOXO3a). Ad-TM-FOXO3a transfection caused remarkable apoptosis, which were accompanied with upregulation of genes related with TNF receptor signaling, such as TNF-alpha, TANK (TRAF-associated NF-kappaB activator), and TTRAP (TRAF and TNF receptor-associated protein). Furthermore, kappaB-Ras1 (IkappaB-interacting Ras-like protein-1) which is known to block IkappaB degradation was found increased, and intranuclear translocation of NF-kappaB was inhibited. GADD45beta and XIAP, negative regulators of c-Jun N-terminal kinase (JNK), were suppressed and JNK activity was increased. Attenuation of TNF signaling pathway either by blocking antibody for TNF receptor or by blocking JNK with DMAP (6-dimethylaminopurine) or Ad-TAM67 (dominant negative c-Jun) cotransfection, significantly reduced FOXO3a-induced apoptosis. Finally, treatment of vasculature with heat shock, an activator of endogenous FOXO3a, resulted in EC apoptosis, which was completely rescued by Ad-TAM67.
Conclusions: FOXO3a promotes apoptosis of ECs, through activation of JNK and suppression of NF-kappaB. These data identify a novel role of FOXO3a to turn TNF receptor signaling to a proapoptotic JNK-dependent pathway.