Strain and motion measurements in balanced steady-state free precession (bSSFP) imaging require high magnetic field homogeneity. This requirement is due to the nonlinear signal response to spin phase variations in bSSFP. Here, a technique that utilizes background gradients for preparing strong in-plane spin phase variations is proposed. As a result, periodic patterns of increased motion sensitivity appear, which are interleaved with bands of low phase-to-noise ratio. Spatial filters commonly used in MR elastography (MRE) remove these bands and leave wave images equivalent to a uniform phase response in bSSFP-MRE. Since phase preparation gradients locally enhance motion sensitivity, the technique can be employed for selectively increasing the wave signal amplitude in MRE. The method is applied without the need for previous shimming, which reduces the examination time. In vivo phase prepared bSSFP-MRE is demonstrated in human liver and heart.