Recently much attention was attracted to the importance of the type I interferon pathway in the initiation and development of the autoimmune disease systemic lupus erythematosus (SLE). Many SLE patients have increased serum levels of IFN-alpha and display an IFN gene expression "signature" characterized by strong overexpression of IFN-responsive genes in leukocytes and target tissues. Moreover, about 20% of cancer patients treated with IFN-alpha therapy manifest symptoms resembling SLE and some later develop the disease. One of the key genes of the IFN-alpha pathway, IRF5, was found to be strongly associated with SLE. Two functional SNPs lead to alternative splicing and altered steady-state level of IRF5 gene expression. Besides, the gene has a polymorphic inserion/deletion in exon 6, which contributes to the diversity in the isoform pattern of IRF5. Interestingly, recent studies have not found association of IRF5 with the other autoimmune diseases, such as rheumatoid arthritis or psoriasis, suggesting the unique role for IRF5 in the development of lupus. Here, we present the current knowledge on IRF5 genetics and its biological function and discuss the possible ways in which IRF5 contributes to susceptibility to SLE.