Background and purpose: Cyclooxygenase-2 (COX-2) is highly expressed during inflammation and can promote the progression of colorectal cancer. Interactions between cancer cells and vascular endothelial cells are key events in this process. Recently, the selective COX-2 inhibitor, celecoxib, was shown to inhibit expression of the adhesion molecules, ICAM-1 and VCAM-1, in the human colon cancer cell line HT29 and to inhibit adhesion of HT29 cells to FCS-coated plastic wells. Here, we evaluated the effects of celecoxib on adhesion of HT29 cells to human umbilical vein endothelial cells (HUVEC), mediated by ICAM-1 and VCAM-1, to assess further the potential protective effects of celecoxib on cancer development.
Experimental approach: Celecoxib was incubated for 4 h with HT29 cells and HUVEC and adhesion was quantified by a computerized micro-imaging system. Expression analysis of ICAM-1 and VCAM-1 cell adhesion molecules was performed by western blot.
Key results: Celecoxib (1 nM-10 microM) inhibited, with the same potency, adhesion of HT29 cells to resting HUVEC or to HUVEC stimulated by tumour necrosis factor-alpha (TNF-alpha), mimicking inflammatory conditions. Analysis of ICAM-1 and VCAM-1 expression showed that celecoxib inhibited expression of both molecules in TNF-alpha-stimulated HUVEC, but not in resting HUVEC; inhibition was concentration-dependent and maximal (about 50%) at 10 microM celecoxib.
Conclusions and implications: In conclusion, our data show that celecoxib inhibits HT29 cell adhesion to HUVEC and expression of ICAM-1 and VCAM-1, in stimulated endothelial cells. These effects may contribute to the chemopreventive activity of celecoxib in the development of colorectal cancer.