Apocynin is not an inhibitor of vascular NADPH oxidases but an antioxidant

Hypertension. 2008 Feb;51(2):211-7. doi: 10.1161/HYPERTENSIONAHA.107.100214. Epub 2007 Dec 17.

Abstract

A large body of literature suggest that vascular reduced nicotinamide-adenine dinucleotide phosphate (NADPH) oxidases are important sources of reactive oxygen species. Many studies, however, relied on data obtained with the inhibitor apocynin (4'-hydroxy-3'methoxyacetophenone). Because the mode of action of apocynin, however, is elusive, we determined its mechanism of inhibition on vascular NADPH oxidases. In HEK293 cells overexpressing NADPH oxidase isoforms (Nox1, Nox2, or Nox4), apocynin failed to inhibit superoxide anion generation detected by lucigenin chemiluminescence. In contrast, apocynin interfered with the detection of reactive oxygen species in assay systems selective for hydrogen peroxide or hydroxyl radicals. Importantly, apocynin interfered directly with the detection of peroxides but not superoxide, if generated by xanthine/xanthine oxidase or nonenzymatic systems. In leukocytes, apocynin is a prodrug that is activated by myeloperoxidase, a process that results in the formation of apocynin dimers. Endothelial cells and smooth muscle cells failed to form these dimers and, therefore, are not able to activate apocynin. Dimer formation was, however, observed in Nox-overexpressing HEK293 cells when myeloperoxidase was supplemented. As a consequence, apocynin should only inhibit NADPH oxidase in leukocytes, whereas in vascular cells, the compound could act as an antioxidant. Indeed, in vascular smooth muscle cells, the activation of the redox-sensitive kinases p38-mitogen-activate protein kinase, Akt, and extracellular signal-regulated kinase 1/2 by hydrogen peroxide and by the intracellular radical generator menadione was prevented in the presence of apocynin. These observations indicate that apocynin predominantly acts as an antioxidant in endothelial cells and vascular smooth muscle cells and should not be used as an NADPH oxidase inhibitor in vascular systems.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acetophenones / pharmacology*
  • Antioxidants / pharmacology*
  • Blood Vessels / cytology
  • Blood Vessels / enzymology*
  • Cell Line
  • Enzyme Activation
  • Enzyme Inhibitors / pharmacology*
  • Free Radical Scavengers / pharmacology
  • Humans
  • Isoenzymes / antagonists & inhibitors
  • Isoenzymes / metabolism
  • Leukocytes / metabolism
  • NADPH Oxidases / antagonists & inhibitors*
  • NADPH Oxidases / metabolism
  • Peroxidase / pharmacology
  • Peroxides / analysis
  • Superoxides / antagonists & inhibitors
  • Transfection
  • Up-Regulation

Substances

  • Acetophenones
  • Antioxidants
  • Enzyme Inhibitors
  • Free Radical Scavengers
  • Isoenzymes
  • Peroxides
  • Superoxides
  • acetovanillone
  • Peroxidase
  • NADPH Oxidases