Purpose: To evaluate agonistic TRA-8 monoclonal antibody to human death receptor 5 (DR5) and gemcitabine in vitro and in an orthotopic pancreatic cancer model.
Experimental design: Pancreatic cancer cell lines were screened for DR5 expression, cytotoxicity, and apoptosis induced by TRA-8, gemcitabine, or gemcitabine and TRA-8. An orthotopic model of pancreatic cancer was established in severe combined immunodeficient mice. Mice were treated with TRA-8, gemcitabine, or a combination for one or two cycles of therapy. Tumor growth (ultrasound) and survival were analyzed.
Results: All five pancreatic cancer cell lines showed DR5 protein expression and varying sensitivity to TRA-8-mediated cytotoxicity. MIA PaCa-2 cells were very sensitive to TRA-8, moderately resistant to gemcitabine, with additive cytotoxicity to the combination. S2-VP10 cells were resistant to TRA-8 and sensitive to gemcitabine with synergistic sensitivity to the combination. Combination treatment in vitro produced enhanced caspase-3 and caspase-8 activation. A single cycle of therapy produced comparable efficacy for single-agent TRA-8 and the combination of TRA-8 and gemcitabine, with significant reduction in tumor size and prolonged survival compared with gemcitabine alone or control animals. With two cycles of therapy, TRA-8 and combination therapy produced enhanced inhibition of tumor growth compared with single-agent gemcitabine or untreated animals. However, the combination regimen showed enhanced survival as compared with single-agent TRA-8.
Conclusions: Pancreatic cancer cell lines express varying levels of DR5 and differ in their sensitivity to TRA-8 and gemcitabine-induced cytotoxicity. TRA-8 with two cycles of gemcitabine therapy produced the best overall survival.