We previously identified a small population of replicative hepatocytes in long-term cultures of human adult parenchymal hepatocytes (PHs) at a frequency of 0.01%-0.09%. These hepatocytes were able to grow continuously through serial subcultures as colony-forming parenchymal hepatocytes (CFPHs). In the present study, we generated gene expression profiles for cultured CFPHs and found that they expressed cytokeratin 19, CD90 (Thy-1), and CD44, but not mature hepatocyte markers such as tryptophan-2,3-dioxygenase (TO) and glucose-6-phosphatase (G6P), confirming that these cells are hepatic progenitor-like cells. The cultured CFPHs were resistant to infection with human hepatitis B virus (HBV). To examine the growth and differentiation capacity of the cells in vivo, serially subcultured CFPHs were transplanted into the progeny of a cross between albumin promoter/enhancer-driven urokinase plasminogen activator-transgenic mice and severe combined immunodeficient (SCID) mice. The cells were engrafted into the liver and were able to grow for at least 10 weeks, ultimately reaching a maximum occupancy rate of 27%. The CFPHs in the host liver expressed differentiation markers such as TO, G6P, and cytochrome P450 subtypes and could be infected with HBV. CFPH-chimeric mice with a relatively high replacement rate exhibited viremia and had high serum levels of hepatitis B surface antigen.
Conclusion: Serially subcultured human hepatic progenitor-like cells from postnatal livers successfully repopulated injured livers and exhibited several phenotypes of mature hepatocytes, including susceptibility to HBV. In vitro-expanded CFPHs can be used to characterize the differentiation state of human hepatic progenitor-like cells.