The fibroblast growth factor (FGF) gene family to date comprises seven members and has been implicated in a wide range of physiological and biological processes, including angiogenesis, morphogenesis, and tumorigenesis. The FGFs are mitogens for a broad range of cells of various embryological origins and can act as differentiation factors. The FGFs can bind to tyrosine kinase and non-tyrosine kinase transmembrane receptors; the physiological basis for this is still unknown. In order to study more thoroughly the activities of FGF-6, we have constructed a bacterial expression vector by inserting FGF-6 complementary DNA sequences into the T7 RNA polymerase-based pET3a vector. The resulting construct is able to drive the expression of a high amount of FGF-6 protein in Escherichia coli, which can be solubilized and purified through heparin-Sepharose chromatography and high salt elution. The purified FGF-6 protein displays a strong mitogenic activity on BALB/c 3T3 cells and is able to morphologically transform these cells. By contrast, adult bovine aortic endothelial cells, which normally require the presence of FGF-2 for their growth, show only a limited mitogenic response that is highly dependent on heparin concentration.