Membrane type 1 matrix metalloproteinase (MT1-MMP) is an integral membrane protein that participates in the processing and degradation of cell surface proteins and the extracellular matrix (ECM). This enzyme regulates ECM turnover in wound repair, promotes cell migration and activates other MMPs, such as MMP-2, which is involved in angiogenesis, cell migration and tumoral metastasis. An increase in pro-inflammatory cytokine expression, such as gamma interferon (IFN-gamma), has been associated with chronic wounds in inflammatory bowel diseases. However, the extent to which cytokines modulate MT1-MMP has not been totally defined. In this report, the effects of the bacterial lipopolysaccharide (LPS) and ECM-bound IFN-gamma on MT1-MMP expression and MMP-2 activity were evaluated by Western blot, RT-PCR and zymography in isolated intestinal epithelial and cultured HT-29 cells. In the presence of LPS, ECM-bound IFN-gamma, but not soluble IFN-gamma, reduced the enterocyte MT1-MMP protein expression. In addition, the active form of MMP-2 was also decreased in the presence of both LPS and IFN-gamma, indicating that lower MMP-2 activity accompanied the decrease in MT1-MMP expression. These results suggest the possibility that endotoxin and ECM-bound IFN-gamma may affect matrix remodeling by modulating matrix metalloproteinase in enterocytes during wound healing.