The feasibility of in situ nitrogen removal in phase-separate bioreactor landfill was investigated. In the experiment, two sets of bioreactor landfill systems, namely conventional two-phase and in situ nitrogen removal bioreactor landfills, were operated. The in situ nitrogen removal bioreactor landfill (NBL) was comprised of a fresh-refuse filled reactor (NBLF), a methanogenic reactor (NBLM) and a nitrifying reactor (NBLN), while the two-phase bioreactor landfill (BL) used as control was comprised of a fresh-refuse filled reactor (BLF) and a methanogenic reactor (BLM). Furthermore, the methanogenic and nitrifying reactors used aged refuse as bulk agents. The results showed that in situ nitrogen removal was viable by phase-separation in the bioreactor landfill. In total 75.8 and 47.5 g of nitrogen were, respectively, removed from the NBL and the BL throughout the experiment. The methanogenic reactor used the aged refuse as medium was highly effective in removing organic matter from the fresh leachate. Furthermore, the aged refuse was also suitable to use as in situ nitrification medium. The degradation of fresh refuse was accelerated by denitrification in the initial stage (namely the initial hydrolyzing stage) despite being delayed by denitrification in a long-term operation.