Angiotensin II-induced extracellular signal-regulated kinase 1/2 activation is mediated by protein kinase Cdelta and intracellular calcium in adult rat cardiac fibroblasts

Hypertension. 2008 Mar;51(3):704-11. doi: 10.1161/HYPERTENSIONAHA.107.098459. Epub 2008 Jan 14.

Abstract

Angiotensin II (Ang II)-induced proliferation of cardiac fibroblasts is a major contributing factor to the pathogenesis of cardiac fibrosis. Ang II activates extracellular signal-regulated kinase (ERK) 1/2 to induce cardiac fibroblast proliferation, but the signaling pathways leading to ERK 1/2 activation have not been elucidated in these cells. The goal of the current study was to identify the intracellular mediators of Ang II-induced ERK 1/2 activation in adult rat cardiac fibroblasts. We determined that 100 nmol/L of Ang II-induced ERK 1/2 phosphorylation is inhibited by simultaneous chelation of cytosolic calcium and downregulation of protein kinase C (PKC) by phorbol ester or by the specific PKCdelta inhibitor rottlerin, as well as PKCdelta small interfering RNA, but not by inhibition of 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetate, phorbol ester, rottlerin, or PKCdelta small interfering RNA alone. We also found that Ang II does not transactivate the epidermal growth factor receptor in adult cardiac fibroblasts, because pretreatment with 1 mumol/L of AG 1478 did not significantly inhibit [(3)H]-thymidine incorporation or ERK 1/2 activation. In addition, immunoprecipitation of the epidermal growth factor receptor demonstrated no significant Ang II-induced phosphorylation of tyrosine residues. Inhibition of phosphatidylinositide 3-kinase, PKCzeta, and src tyrosine kinase had no effect on Ang II-induced ERK 1/2 activation. Collectively, these data demonstrate that Ang II does not transactivate the epidermal growth factor receptor in adult rat cardiac fibroblasts to activate ERK 1/2, a common pathway described in vascular smooth muscle and other cell types, but rather occurs via activation of distinct parallel signaling pathways mechanistically controlled by intracellular Ca(2+) and PKCdelta.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acetophenones / pharmacology
  • Angiotensin II / physiology*
  • Animals
  • Benzopyrans / pharmacology
  • Calcium / metabolism*
  • Cell Proliferation
  • Cells, Cultured
  • Enzyme Activation
  • ErbB Receptors / metabolism
  • Fibroblasts / metabolism*
  • Male
  • Mitogen-Activated Protein Kinase 1 / metabolism*
  • Mitogen-Activated Protein Kinase 3 / metabolism*
  • Myocardium / cytology*
  • Myocardium / metabolism
  • Phorbol Esters / pharmacology
  • Phosphorylation
  • Protein Kinase C-delta / genetics
  • Protein Kinase C-delta / metabolism*
  • Rats
  • Rats, Sprague-Dawley
  • Signal Transduction / physiology

Substances

  • Acetophenones
  • Benzopyrans
  • Phorbol Esters
  • Angiotensin II
  • rottlerin
  • Egfr protein, rat
  • ErbB Receptors
  • Protein Kinase C-delta
  • Mitogen-Activated Protein Kinase 1
  • Mitogen-Activated Protein Kinase 3
  • Calcium