Ovarian carcinogenesis, as in most cancers, involves multiple genetic alterations. A great deal has been learned about proteins and pathways important in the early stages of malignant transformation and metastasis, as derived from studies of individual tumors, microarray data, animal models, and inherited disorders that confer susceptibility. However, a full understanding of the earliest recognizable events in epithelial ovarian carcinogenesis is limited by the lack of a well-defined premalignant state common to all ovarian subtypes and by the paucity of data from early-stage cancers. Evidence suggests that ovarian cancers can progress both through a stepwise mutation process (low-grade pathway) and through greater genetic instability that leads to rapid metastasis without an identifiable precursor lesion (high-grade pathway). In this review, we discuss many of the genetic and molecular disorders in each key process that is altered in cancer cells, and we present a model of ovarian pathogenesis that incorporates the role of tumor cell mutations and factors in the host microenvironment important to tumor initiation and progression.