A highly convergent strategy was used for the synthesis of a tetrasaccharide [3-aminopropyl beta-L-arabinofuranosyl-(1-->3)-alpha-L-rhamnopyranosyl-(1-->2)-[alpha-L-rhamnopyranosyl-(1-->3)]-alpha-L-arabinopyranoside] portion of the B side chain of the plant cell-wall pectic polysaccharide rhamnogalacturonan II (RG-II). The terminal nonreducing beta-L-arabinofuranosyl residue of the target compound was installed by using an arabinofuranosyl donor that was protected with a 3,5-O-(di-tert-butylsilane) group to facilitate nucleophilic attack from the beta-face. The synthetic strategy also employed a chemoselective glycosylation of a trichloroacetimidate donor with a thioglycosyl acceptor; this gave a product that could be used immediately in a subsequent glycosylation. The reducing end of the tetrasaccharide contained an aminopropyl group to facilitate conjugation to keyhole limpet hemocyanin (KLH) and bovine serum albumin (BSA). Mice that were immunized with a KLH-tetrasaccharide conjugate produced antibodies that recognized RG-II isolated from Arabidopsis thaliana cell walls, but did not recognize RG-II obtained from red wine. Our data suggest that the arabinopyranosyl residue exists in the (4)C(1) conformation in the tetrasaccharide and in A. thaliana RG-II, whereas it has the (1)C(4) conformation in wine RG-II. It is proposed that differences in the conformation of side chain B might account for the ability of antibodies to discriminate between RG-II that was isolated from Arabidopsis and wine.