Impaired insulin secretion and glucose intolerance in synaptotagmin-7 null mutant mice

Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):3992-7. doi: 10.1073/pnas.0711700105. Epub 2008 Feb 28.

Abstract

Vertebrates express at least 15 different synaptotagmins with the same domain structure but diverse localizations and tissue distributions. Synaptotagmin-1,-2, and -9 act as calcium sensors for the fast phrase of neurotransmitter release, and synaptotagmin-12 acts as a calcium-independent modulator of release. The exact functions of the remaining 11 synaptotagmins, however, have not been established. By analogy to the role of synaptotagmin-1, -2, and -9 in neurotransmission, these other synaptotagmins may serve as Ca(2+) transducers regulating other Ca(2+)-dependent membrane processes, such as insulin secretion in pancreatic beta-cells. Of these other synaptotagmins, synaptotagmin-7 is one of the most abundant and is present in pancreatic beta-cells. To determine whether synaptotagmin-7 regulates Ca(2+)-dependent insulin secretion, we analyzed synaptotagmin-7 null mutant mice for glucose tolerance and insulin release. Here, we show that synaptotagmin-7 is required for the maintenance of systemic glucose tolerance and glucose-stimulated insulin secretion. Mutant mice have normal insulin sensitivity, insulin production, islet architecture and ultrastructural organization, and metabolic and calcium responses but exhibit impaired glucose-induced insulin secretion, indicating a calcium-sensing defect during insulin-containing secretory granule exocytosis. Taken together, our findings show that synaptotagmin-7 functions as a positive regulator of insulin secretion and may serve as a calcium sensor controlling insulin secretion in pancreatic beta cells.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adipose Tissue / drug effects
  • Animals
  • Body Weight / drug effects
  • Calcium Signaling / drug effects
  • Female
  • Glucose / metabolism
  • Glucose / pharmacology
  • Glucose Intolerance / metabolism*
  • Insulin / metabolism*
  • Insulin Secretion
  • Insulin-Secreting Cells / cytology
  • Insulin-Secreting Cells / drug effects
  • Insulin-Secreting Cells / metabolism
  • Insulin-Secreting Cells / ultrastructure
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Mutant Strains
  • NADP / metabolism
  • Synaptotagmins / deficiency*
  • Synaptotagmins / metabolism

Substances

  • Insulin
  • Synaptotagmins
  • NADP
  • Glucose