The aim of this study was to explore the biophysical effects of static magnetic field on osteoblastic cells. MG63 cells were exposed to 0.25 and 0.4-T static magnetic fields (SMF). The cell cycle effects were tested by flow cytometry. The differentiation of the cells was assessed by detecting the changes in prostaglandin E2, osteocalcin, and extracellular matrix expression. Membrane fluidity was used to evaluate the alterations in the biophysical properties of cellular membranes after the SMF simulations. Our results show that SMF exposure increases prostaglandin E2 level and extracellular matrix express in MG63 cells. On the other hand, MG63 cells exposed to 0.4-T SMF exhibited a significant decrease in membrane fluidity at 8 h. Based on these findings, it appears reasonable to suggest that SMF affect osteoblastic maturation by increasing membrane rigidity and then inducing differentiation pathway.