Background: The transcriptional regulation of cytokines released and controlled by memory T cells is not well understood. Defective IFN-gamma production in allergic asthma correlates in human beings with the risk of wheezing in childhood.
Objective: To understand the role of the transcription factor nuclear factor of activated T cells 2 (NFATc2) in memory and effector T cells in the airways in experimental allergic asthma.
Methods: We used murine models of allergic asthma and adoptive cell transfer of fluorescence-activated sorted cells in a disease model.
Results: Mice lacking NFATc2 developed an increase in airwayhyperresponsiveness (AHR), remodeling, and serum IgE levelson ovalbumin sensitization. This phenotype was associated withCD81CD1222 T cells deficient in IFN-g production in theairways. The origin of this phenotype in NFATc2(2/2) mice wasrelated to an expanded population of lung CD81CD1221(IL-2Rb chain) CD127hi (IL-7 receptor [R] a chain1) long-livedmemory cells. Adoptive transfer of ovalbumin-specific CD81NFATc2(2/2) T cells enhanced the AHR generated byNFATc2(2/2) CD41 T cells in immunodeficient mice, increasedIL-17, and reduced IFN-g production in the reconstituted mice. Depletion of the memory CD81CD1221IL-7Rhigh T-cellpopulation corrected the defect in IFN-g production by lungNFATc2(2/2) CD81CD1222 cells and abrogated the increasedAHR observed in NFATc2(2/2) CD81 T-cell-reconstituted micewith a severe combined immunodeficiency disorder.
Conclusion: Taken together, our results suggest that NFATc2 expression in long-lived memory CD8+ T cells controls IL-2 and IFN-gamma production in lung CD8+ T cells, which then limits TH17 and TH2 development in the airways during allergen challenge.