Objective: We studied the task-induced spatiotemporal evolution and characteristics of cortical neural oscillations in children during an auditory word recognition task.
Methods: We presented abstract nouns binaurally and recorded the MEG response in eight healthy right-handed children (6-12 years). We calculated the event-related changes in cortical oscillations using a beamformer spatial filter analysis technique (SAM), then transformed each subject's statistical maps into standard space and used these to make group statistical inferences.
Results: Across subjects, the cortical response to words could be divided into at least two phases: an initial event-related synchronization in both the right temporal (100-300 ms, 15-25 Hz; 200-400 ms, 5-15 Hz) and left frontal regions (200-400 ms; 15-25 Hz); followed by a strong left-lateralized event-related desynchronization in the left temporal region (500-700 ms; 5-15 Hz).
Conclusions: We found bilateral event-related synchronization followed by later left lateralized event-related desynchronization in language-related cortical areas. These data demonstrate the spatiotemporal time course of neural activation during an auditory word recognition task in a group of children. As well, this demonstrates the utility of SAM analyses to detect subtle sequential task-related neural activations.