The aim of this study was to investigate whether atorvastatin inhibits epidermal growth factor receptor (EGFR) activation in cardiomyocytes in vitro and slows the progression of cardiac remodeling induced by pressure overload in mice. Either atorvastatin (5 mg/kg/day) or vehicle was orally administered to male C57BL/6J mice with transverse aortic constriction (TAC). Physiological parameters were obtained by echocardiography or left ventricular (LV) catheterization, and morphological and molecular parameters of the heart were also examined. Furthermore, cultured neonatal rat cardiomyocytes were studied to clarify the underlying mechanisms. Four weeks after TAC, atorvastatin reduced the heart/body weight and lung/body weight ratios (8.69+/-0.38 to 6.45+/-0.31 mg/g (p<0.001) and 10.89+/-0.68 to 6.61+/-0.39 mg/g (p<0.01) in TAC mice with and without atorvastatin, respectively). Decrease of LV end-diastolic pressure and the time constant of relaxation, increased fractional shortening, downregulation of a disintegrin and metalloproteinase (ADAM)12, ADAM17 and heparin-binding epidermal growth factor genes, and reduction of the activity of EGFR and extracellular signal-regulated kinase (ERK) were observed in the atorvastatin group. Phenylephrine-induced protein synthesis, phosphorylation of EGFR, and activation of ERK in neonatal rat cardiomyocytes were all inhibited by atorvastatin. These findings indicated that atorvastatin ameliorates cardiac remodeling in mice with pressure overload, and its actions are associated with inhibition of the EGFR signaling pathway.