Dendritic cells (DC) have important functions in T cell immunity and T cell tolerance. Previously, it was believed that T cell unresponsiveness induced by immature DC (iDC) is caused by the absence of inflammatory signals in steady-state in vivo conditions and by the low expression levels of costimulatory molecules on iDC. However, a growing body of evidence now indicates that iDC can also actively maintain peripheral T cell tolerance by the induction and/or stimulation of regulatory T cell populations. In this study, we investigated the in vitro T cell stimulatory capacity of iDC and mature DC (mDC) and found that both DC types induced a significant increase in the number of transforming growth factor (TGF)-beta and interleukin (IL)-10 double-positive CD4(+) T cells within 1 week of autologous DC/T cell co-cultures. In iDC/T cell cultures, where antigen-specific T cell priming was significantly reduced as compared to mDC/T cell cultures, we demonstrated that the tolerogenic effect of iDC was mediated by soluble TGF-beta and IL-10 secreted by CD4(+)CD25(-)FOXP3(-) T cells. In addition, the suppressive capacity of CD4(+) T cells conditioned by iDC was transferable to already primed antigen-specific CD8(+) T cell cultures. In contrast, addition of CD4(+) T cells conditioned by mDC to primed antigen-specific CD8(+) T cells resulted in enhanced CD8(+) T cell responses, notwithstanding the presence of TGF-beta(+)/IL-10(+) T cells in the transferred fraction. In summary, we hypothesize that DC have an active role in inducing immunosuppressive cytokine-secreting regulatory T cells. We show that iDC-conditioned CD4(+) T cells are globally immunosuppressive, while mDC induce globally immunostimulatory CD4(+) T cells. Furthermore, TGF-beta(+)/IL-10(+) T cells are expanded by DC independent of their maturation status, but their suppressive function is dependent on immaturity of DC.