The trace amine-associated receptor 1 (TAAR(1)) is a biogenic amine G protein-coupled receptor (GPCR) that is potently activated by 3-iodothyronamine (1, T(1)AM) in vitro. Compound 1 is an endogenous derivative of the thyroid hormone thyroxine which rapidly induces hypothermia, anergia, and bradycardia when administered to mice. To explore the role of TAAR(1) in mediating the effects of 1, we rationally designed and synthesized rat TAAR(1) superagonists and lead antagonists using the rotamer toggle switch model of aminergic GPCR activation. The functional activity of a ligand is proposed to be correlated to its probable interactions with the rotamer switch residues; agonists allow the rotamer switch residues to toggle to their active conformation, whereas antagonists interfere with this conformational transition. These agonist and antagonist design principles provide a conceptual model for understanding the relationship between the molecular structure of a drug and its pharmacological properties.