The recently ascertained network and dynamic organization of the mitochondrion, as well as the demonstration of energy proteins and metabolites subcompartmentalization, have led to a reconsideration of the relationships between organellar form and function. In particular, the impact of mitochondrial morphological changes on bioenergetics is inseparable. Several observations indicate that mitochondrial energy production may be controlled by structural rearrangements of the organelle both interiorly and globally, including the remodeling of cristae morphology and elongation or fragmentation of the tubular network organization, respectively. These changes are mediated by fusion or fission reactions in response to physiological signals that remain unidentified. They lead to important changes in the internal diffusion of energy metabolites, the sequestration and conduction of the electric membrane potential (Delta Psi), and possibly the delivery of newly synthesized ATP to various cellular areas. Moreover, the physiological or even pathological context also determines the morphology of the mitochondrion, suggesting a tight and mutual control between mitochondrial form and bioenergetics. In this review, we delve into the link between mitochondrial structure and energy metabolism.