Regulator of G-protein signaling subtype 4 mediates antihypertrophic effect of locally secreted natriuretic peptides in the heart

Circulation. 2008 May 6;117(18):2329-39. doi: 10.1161/CIRCULATIONAHA.107.732990. Epub 2008 Apr 28.

Abstract

Background: Mice lacking guanylyl cyclase-A (GC-A), a natriuretic peptide receptor, have pressure-independent cardiac hypertrophy. However, the mechanism underlying GC-A-mediated inhibition of cardiac hypertrophy remains to be elucidated. In the present report, we examined the role of regulator of G-protein signaling subtype 4 (RGS4), a GTPase activating protein for G(q) and G(i), in the antihypertrophic effects of GC-A.

Methods and results: In cultured cardiac myocytes, treatment of atrial natriuretic peptide stimulated the binding of guanosine 3',5'-cyclic monophosphate-dependent protein kinase (PKG) I-alpha to RGS4, PKG-dependent phosphorylation of RGS4, and association of RGS4 and Galpha(q). In contrast, blockade of GC-A by an antagonist, HS-142-1, attenuated the phosphorylation of RGS4 and association of RGS4 and Galpha(q). Moreover, overexpressing a dominant negative form of RGS4 diminished the inhibitory effects of atrial natriuretic peptide on endothelin-1-stimulated inositol 1,4,5-triphosphate production, [(3)H]leucine incorporation, and atrial natriuretic peptide gene expression. Furthermore, expression and phosphorylation of RGS4 were significantly reduced in the hearts of GC-A knockout (GC-A-KO) mice compared with wild-type mice. For further investigation, we constructed cardiomyocyte-specific RGS4 transgenic mice and crossbred them with GC-A-KO mice. The cardiac RGS4 overexpression in GC-A-KO mice significantly reduced the ratio of heart to body weight (P<0.001), cardiomyocyte size (P<0.01), and ventricular calcineurin activity (P<0.05) to 80%, 76%, and 67% of nontransgenic GC-A-KO mice, respectively. It also significantly suppressed the augmented cardiac expression of hypertrophy-related genes in GC-A-KO mice.

Conclusions: These results provide evidence that GC-A activates cardiac RGS4, which attenuates Galpha(q) and its downstream hypertrophic signaling, and that RGS4 plays important roles in GC-A-mediated inhibition of cardiac hypertrophy.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Atrial Natriuretic Factor / metabolism*
  • Atrial Natriuretic Factor / physiology*
  • Cardiomegaly / metabolism*
  • Cardiomegaly / prevention & control*
  • Cells, Cultured
  • Female
  • Male
  • Mice
  • Mice, Knockout
  • Mice, Transgenic
  • Myocardium / cytology
  • Myocardium / metabolism*
  • Myocytes, Cardiac / metabolism
  • RGS Proteins / biosynthesis
  • RGS Proteins / deficiency
  • RGS Proteins / genetics
  • RGS Proteins / physiology*
  • Signal Transduction / genetics
  • Signal Transduction / physiology*

Substances

  • RGS Proteins
  • RGS4 protein
  • Atrial Natriuretic Factor