We report the first direct capacitance measurements of silicon nanowires (SiNWs) and the consequent determination of field carrier mobilities in undoped-channel SiNW field-effect transistors (FETs) at room temperature. We employ a two-FET method for accurate extraction of the intrinsic channel resistance and intrinsic channel capacitance of the SiNWs. The devices used in this study were fabricated using a top-down method to create SiNW FETs with up to 1000 wires in parallel for increasing the raw capacitance while maintaining excellent control on device dimensions and series resistance. We found that, compared with the universal mobility curves for bulk silicon, the electron and hole mobilities in nanowires are comparable to those of the surface orientation that offers a lower mobility.