The in vivo assessment of physiological processes associated with microcirculation in the head and neck tissue by means of perfusion computed tomography is widely used in the management of patients with head and neck tumors. However, there is no systematic consideration of the total acquisition duration and placement of the scans. A simulation study for optimizing perfusion studies of extracranial head and neck tumors, with considerations of reducing radiation dose while maintaining accuracy of the perfusion parameters, is demonstrated here. The suggested that dual-phase optimized protocols may provide reliable estimations of the permeability surface area product as well as blood flow and volume without additional radiation burden and serious patient discomfort. These optimized protocols can potentially be useful in the clinical setting of examining patients with extracranial head and neck tumors.