Aims: To investigate whether Atorvastatin (Ator) treatment improves the cardiac micro-environment that facilitates survival and differentiation of bone-marrow-derived mesenchymal stem cells (MSCs) implanted in the post-infarct myocardium.
Methods and results: Myocardial infarction was created by coronary ligation and immediately after reperfusion, autologous bone-marrow-derived MSCs were transplanted into the hearts of Chinese swine that were pretreated with or without Ator. Six weeks after transplantation, as evaluated by SPECT and MRI all the animals with Ator showed improved cardiac perfusion and contractility when compared with untreated. Increased survival and differentiation of implanted MSCs and decreased infarct area were observed in the Ator-treated, MSC-implanted animals. In the absence of Ator, MSC transplantation only achieved a modest improvement in perfusion and morphology. The combined treatment with Ator and MSCs significantly inhibited cardiac cell apoptosis, reduced oxidative stress, and suppressed expression of the inflammatory cytokines in the post-infarct myocardium.
Conclusion: Ator treatment may protect the myocardium undergoing acute infarction and reperfusion by creating a better environment for the survival and differentiation of implanted MSCs. The benefit of the Ator/stem cell combined therapy may result from the statin-mediated inhibition of apoptosis, oxidative stress, and inflammation in the infarcted myocardium.