The complexes fac-[IrCl(3)(DMSO)(pp)] 1a-5a may be prepared by stepwise reaction of IrCl(3) x 3H(2)O with the appropriate polypyridyl ligand (pp=bpy, phen, dpq, dppz, dppn) and DMSO in CH(3)OH solution in the dark. The fac isomers of 1a-5a are stable in light-protected CD(2)Cl(2) solution but, with the exception of 5a, isomerize rapidly to a mixture of the fac and mer isomers in the presence of light. In contrast, solutions of the fac isomers in the polar solvents D(2)O and CD(3)OD are stable under such conditions. The isomer mer-[IrCl(3)(DMSO-kappa S)(phen)] 2b was, however, isolated by slow evaporation of an H(2)O/CH(3)OH solution of 2a and characterized by X-ray structural analysis. UV/Vis and CD studies of the interaction of 1a-5a with calf thymus DNA are in accordance with an effective absence of intercalation. (1)H NMR studies indicate that the complexes react slowly with compounds containing soft S donor atoms (e. g. N-acetylmethionine) but do not react with the guanine base of 5'-GMP(2-). The complexes 2a-5a are potent in vitro cytotoxic agents toward the human cell lines MCF-7 and HT-29 and their IC(50) values are dependent on the size of the polypyridyl ligand in the order phen, dpq>dppz>dppn. For instance IC(50) values of 5.5 (0.9), 0.8 (0.3) and 0.21 (0.11)microM were established for 3a-5a against MCF-7 cells and 6.1 (0.7), 1.5 (0.2) and 1.3 (0.4)microM against HT-29 cells. These values correlate with the cellular uptake efficiency which, on exposure to 10 microM solutions, reaches its highest levels (19.3(0.8) and 37.4(8.9) ng Ir/mg protein for MCF-7 and HT-29, respectively) for the dppn compound 5a.