A role for guanosine 3',5'-cyclic monophosphate (cGMP) and the protein kinase G (PKG) pathway in synaptic long-term depression (LTD) in the hippocampal CA1 region has been proposed, based on observations in vitro, where, for example, increases of [cGMP] result in short-term depression (STD) coupled with a reduction in presynaptic glutamate release. To date, no evidence exists to support that LTD in the intact, freely behaving animal involves these mechanisms. We examined the effect of increases of [cGMP] on basal transmission and electrically-induced STD at hippocampal CA1 synapses in vivo. We found that elevating [cGMP] dose-dependently caused a chemically-induced STD which occluded electrically-induced STD. Repeated administration of Zaprinast, an inhibitor of cGMP-degrading phosphodiesterase, resulted in persistent LTD (>24 h). Paired-pulse analysis supported a presynaptic mechanism of action. Application of an inhibitor of soluble guanylate cyclase prevented LTD induced by low-frequency stimulation (LFS), and impaired LFS-STD elicited in the presence of Zaprinast. These data suggest the involvement of cGMP in LTD in the CA1 region of freely behaving adult rats.