Aim: Our aim was to study the new signalling pathway of ghrelin in the guinea-pig femoral artery using the outward I(K) as a sensor.
Methods: Whole-cell patch-clamp experiments were performed on single smooth muscle cells, freshly isolated from the guinea-pig femoral artery. The contractile force of isometric preparations of the same artery was measured using a wire-myograph.
Results: In a Ca2+- and nicardipine-containing external solution, 1 mmol L(-1) tetraethylammonium reduced the net I(K) by 49 +/- 7%. This effect was similar and not additive to the effect of the specific BK(Ca) channel inhibitor iberiotoxin. Ghrelin (10(-7) mol L(-1)) quickly and significantly reduced the amplitudes of tetraethylammonium- and iberiotoxin-sensitive currents through BK(Ca) channels. The application of 5 x 10(-6) mol L(-1) desacyl ghrelin did not affect the amplitude of the control I(K) but it successfully prevented the ghrelin-induced I(K) decrease. The effect of ghrelin on I(K) was insensitive to selective inhibitors of cAMP-dependent protein kinase, soluble guanylyl cyclase, cGMP-dependent protein kinase or a calmodulin antagonist, but was effectively antagonized by blockers of BK(Ca) channels, phosphatidylinositol-phospholipase C, phosphatidylcholine-phospholipase C, protein kinase C, SERCA, IP(3)-induced Ca2+ release and by pertussis toxin. The ghrelin-induced increase in the force of contractions was blocked when iberiotoxin (10(-7) mol L(-1)) was present in the bath solution.
Conclusions: Ghrelin reduces I(K(Ca)) in femoral artery myocytes by a mechanism that requires activation of Galpha(i/o)-proteins, phosphatidylinositol phospholipase C, phosphatidylcholine phospholipase C, protein kinase C and IP(3)-induced Ca2+ release.