BCL-2 phosphorylation modulates sensitivity to the BH3 mimetic GX15-070 (Obatoclax) and reduces its synergistic interaction with bortezomib in chronic lymphocytic leukemia cells

Leukemia. 2008 Sep;22(9):1712-20. doi: 10.1038/leu.2008.175. Epub 2008 Jul 3.

Abstract

Chronic lymphocytic leukemia (CLL) is a B-cell lymphoid neoplasm with deregulated apoptosis and overexpression of several antiapoptotic BCL-2 proteins. GX15-070/Obatoclax is a small-molecule BH3 mimetic compound that has shown activity against several hematologic malignancies and solid tumors. In the present work, we report that GX15-070 led to the disruption of BCL-2/BIM and MCL-1/BAK complexes in CLL cells, followed by the activation of the mitochondrial apoptotic pathway. CLL cells showed lower sensitivity to GX15-070 than primary mantle cell lymphoma (MCL) ones, in correlation with higher levels of phosphorylated BCL-2 at serine 70 residue (pBCL-2(Ser70)) in CLL cells. Decrease in BCL-2 phosphorylation by extracellular signal-regulated kinase (ERK)1/2 inhibition increased CLL sensitivity to GX15-070, while blocking BCL-2 dephosphorylation using a PP2A antagonist reduced the activity of this BH3 mimetic. GX15-070 activity was increased by cotreatment with the proteasome inhibitor bortezomib. However, as proteasome inhibition led to the accumulation of phosphorylated BCL-2, the degree of interaction between GX15-070 and bortezomib was regulated by basal pBCL-2(Ser70) levels. These results support the role of BCL-2 phosphorylation as a mechanism of resistance to BH3 mimetic compounds, and demonstrate that combination approaches including ERK inhibitors could enhance BH3 mimetics activity both alone or in combination with proteasome inhibitors.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antineoplastic Combined Chemotherapy Protocols / pharmacology*
  • Apoptosis
  • Boronic Acids / pharmacology*
  • Bortezomib
  • Drug Synergism
  • Humans
  • Indoles
  • Leukemia, Lymphocytic, Chronic, B-Cell / drug therapy*
  • Leukemia, Lymphocytic, Chronic, B-Cell / genetics
  • Leukemia, Lymphocytic, Chronic, B-Cell / pathology
  • Lymphoma, Mantle-Cell / drug therapy
  • Lymphoma, Mantle-Cell / pathology
  • Mitochondria / metabolism
  • Phosphorylation
  • Protease Inhibitors / pharmacology
  • Proto-Oncogene Proteins c-bcl-2 / antagonists & inhibitors
  • Proto-Oncogene Proteins c-bcl-2 / metabolism*
  • Pyrazines / pharmacology*
  • Pyrroles / pharmacology*
  • Tumor Cells, Cultured

Substances

  • Boronic Acids
  • Indoles
  • Protease Inhibitors
  • Proto-Oncogene Proteins c-bcl-2
  • Pyrazines
  • Pyrroles
  • Bortezomib
  • obatoclax