The growing field of skeletal developmental biology provides new molecular markers for the cellular precursors of cartilage and bone. These markers enable resolution of early features of skeletal development that are otherwise undetectable through conventional staining techniques. This study investigates mRNA distributions of skeletal regulators runx2 and sox9 along with the cartilage-dominant collagen 2(alpha)1 (col2a1) in embryonic limbs of the direct-developing anuran, Eleutherodactylus coqui. To date, distributions of these genes in the limb have only been examined in studies of the two primary amniote models, mouse and chicken. In E. coqui, expression of transcription factors runx2 and sox9 precedes that of col2a1 by 0.5-1 developmental stage (approximately 12-24 h). Limb buds of E. coqui contain unique distal populations of both runx2- and sox9-expressing cells, which appear before formation of the primary limb axis and do not express col2a1. The subsequent distribution of col2a1 reveals a primary limb axis similar to that described for Xenopus laevis. Precocious expression of both runx2 and sox9 in the distal limb bud represents a departure from the conserved pattern of proximodistal formation of the limb skeleton that is central to prevailing models of vertebrate limb morphogenesis. Additionally, runx2 is expressed in the early joint capsule perichondria of the autopod and in the perichondria of long bones well before periosteum formation. The respective distributions of sox9 and col2a1 do not reveal the joint perichondria but instead are expressed in the fibrocartilage that fills each presumptive joint capsule. These distinct patterns of runx2- and sox9-expressing cells reveal precursors of chondrocyte and osteoblast lineages well before the appearance of mature cartilage and bone.