Dominant disease alleles are attractive therapeutic targets for allele-specific gene silencing by small interfering RNA (siRNA). Sialuria is a dominant disorder caused by missense mutations in the allosteric site of GNE, coding for the rate-limiting enzyme of sialic acid biosynthesis, UDP-GlcNAc 2-epimerase/ManNAc kinase. The resultant loss of feedback inhibition of GNE-epimerase activity by CMP-sialic acid causes excessive production of free sialic acid. For this study we employed synthetic siRNAs specifically targeting the dominant GNE mutation c.797G>A (p.R266Q) in sialuria fibroblasts. We demonstrated successful siRNA-mediated down-regulation of the mutant allele by allele-specific real-time PCR. Importantly, mutant allele-specific silencing resulted in a significant decrease of free sialic acid, to within the normal range. Feedback inhibition of GNE-epimerase activity by CMP-sialic acid recovered after silencing demonstrating specificity of this effect. These findings indicate that allele-specific silencing of a mutated allele is a viable therapeutic strategy for autosomal dominant diseases, including sialuria.