The adult hypothalamo-neurohypophysial system undergoes a striking activity-dependent morphological remodelling that modifies the glial enwrapping of its magnocellular neurons. Although the functional consequences of such remodelling remain hypothetical, recent evidence has provided new insights into the repercussions of glial environment modifications on the physiology of magnocellular neurosecretory cells at the synaptic level. These studies have revealed that the reduced astrocytic coverage of magnocellular neurons occurring in the SON affects various functions in which astrocytes play key roles. These functions include uptake of neurotransmitters such as glutamate, restricting diffusion of neuroactive substances within the extracellular space and release of informative molecules known as gliotransmitters that act on neighbouring neurons to modulate synaptic transmission and excitability. Overall, our observations indicate that the neuron-glial anatomical reorganization leads to modifications of glutamatergic transmission that might be important for the physiology of the hypothalamo-neurohypophysial system.