Tumour growth is dependent on angiogenesis, the key mediator of which is vascular endothelial growth factor-A (VEGF-A). VEGF-A exists as two families of alternatively spliced isoforms - pro-angiogenic VEGF(xxx) generated by proximal, and anti-angiogenic VEGF(xxx)b by distal splicing of exon 8. VEGF(165)b inhibits angiogenesis and is downregulated in tumours. Here, we show for the first time that administration of recombinant human VEGF(165)b inhibits colon carcinoma tumour growth and tumour vessel density in nude mice, with a terminal plasma half-life of 6.2h and directly inhibited angiogenic parameters (endothelial sprouting, orientation and structure formation) in vitro. Intravenous injection of (125)I-VEGF(165)b demonstrated significant tumour uptake lasting at least 24h. No adverse effects on liver function or haemodynamics were observed. These results indicate that injected VEGF(165)b was taken up into the tumour as an effective anti-angiogenic cancer therapy, and provide proof of principle for the development of this anti-angiogenic growth factor splice isoform as a novel cancer therapy.