Facile synthesis of ultrathin Au nanorods by aging the AuCl(oleylamine) complex with amorphous Fe nanoparticles in chloroform

Nano Lett. 2008 Sep;8(9):3052-5. doi: 10.1021/nl8017127. Epub 2008 Aug 6.

Abstract

Despite plenty of reports on the preparation of Au nanorods, it remains challenging to grow uniform Au nanorods with diameters below 5 nm. In this communication, we demonstrate the facile synthesis of ultrathin Au nanorods with a uniform diameter of 2 nm and an average aspect ratio of 30. The synthesis involves the room-temperature aging of a mixture of the [AuCl(oleylamine)] complex with amorphous Fe nanoparticles in chloroform. Analysis of the growth mechanism indicates that Au nanoparticles with a high density of defects were formed at early stages, followed by etching and redeposition process that gradually led to the growth of ultrathin Au nanorods along the 111 direction. This growth mechanism is different from the mechanism recently reported for ultrathin Au nanowires (ref ), where the [AuCl(oleylamine)] complex is assembled into polymer chains followed by reduction to form wires, although the template effect of oleylamine for the formation of ultrathin Au nanorods cannot be completely ruled out.