In vitro and in vivo studies have demonstrated that UCB (unconjugated bilirubin) is neurotoxic. Although previous studies suggested that both MRP1 (multidrug resistance-associated protein 1) and MDR1 (multidrug resistance protein 1) may protect cells against accumulation of UCB, direct comparison of their role in UCB transport was never performed. To this end, we used an inducible siRNA (small interfering RNA) expression system to silence the expression of MRP1 and MDR1 in human neuroblastoma SH-SY5Y cells. The effects of in vitro exposure to clinically-relevant levels of unbound UCB were compared between unsilenced (control) cells and cells with similar reductions in the expression of MRP1 or MDR1, documented by RT-PCR (reverse transcription-PCR) (mRNA), immunoblotting (protein), and for MDR1, the enhanced net uptake of a specific fluorescent substrate. Cytotoxicity was assessed by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide] test. MRP1-deficient cells accumulated significantly more UCB and suffered greater cytotoxicity than controls. By contrast, MDR1-deficient cells exhibited UCB uptake and cytotoxicity comparable with controls. At intermediate levels of silencing, the increased susceptibility to UCB toxicity closely correlated with the decrease in the expression of MRP1, but not of MDR1. These data support the concept that limitation of cellular UCB accumulation, due to UCB export mediated by MRP1, but not MDR1, plays an important role in preventing bilirubin encephalopathy in the newborn.