The anti- and pro-oxidant effects of green tea catechins have been implicated in the alterations of cellular functions determining their chemoprotective and therapeutic potentials in toxicity and diseases. The glutathione S-transferases (GSTs; EC 2.5.1.18) family is a widely distributed phase-II detoxifying enzymes and the GST P1-1 isoenzyme has been shown to catalyze the conjugation of GSH with some alkylating anti-cancer agents, suggesting that over-expression of GST P1-1 would result in tumor cell resistance. Here we report the docking study of four green tea catechins and four alkylating anticancer drugs into the GST P1-1 model, as GSTs were found to be affected by tea catechins. The EGCG ligands exhibit higher docking potential with respect to the anticancer agents, with a ligand-receptor interaction pattern indicating an high conformational stability. Consequently, the competition mechanisms favourable for the green tea catechins could lead to enzyme(s) desensitisation with a reduction of the alkylating drugs metabolism. The results provide a useful theoretical contribution in understanding the biochemical mechanisms implicated in the chemotherapeutic use of green tea catechins in oxidative stress-related diseases.