Purpose: To evaluate how information from combined coronal optical coherence tomography (OCT) and confocal laser scanning ophthalmoscopy (SLO) with integrated simultaneous indocyanine green (ICG) dye angiography can be used in the diagnosis of a variety of macular diseases.
Methods: A compact chin-rest-based OCT/confocal imaging system was used to produce the OCT image and excite the fluorescence in the ICG dye. The same eye fundus area can be visualized with coronal (C-scans, en face) OCT and ICG angiography simultaneously. Fast T scanning (transverse scanning, en face) was used to build B- or C-scan OCT images along with confocal SLO views, with and without ICG filtration. The OCT, confocal SLO and ICG fluorescence images were simultaneously presented in a three-screen format. A live mixing channel overlaid the ICG sequence on the coronal OCT slices in a fourth panel for immediate comparison.
Results: Thirty eyes were imaged. The pathologic conditions studied included classic and occult neovascular membranes, vascularized RPE detachments, polypoidal choroidal vasculopathy, traumatic choroidal rupture, diabetic maculopathy, central serous retinopathy, and macular drusen. Images were evaluated with special attention toward identifying novel relationships between morphology and function revealed by the superimposition of the studies.
Conclusions: Simultaneous visualization of an en face (coronal, C-scan) OCT image and of an ICG angiogram, displayed side by side and superimposed, permits more precise correlations between late fluorescence accumulation with structures deep to the retinal surface at the retina-choroid interface. The multiplanar scanning also permits immediate B-scan OCT cross-sectional views of regions of abnormal fluorescence. The paper demonstrates the synergy between the two types of studies, functional and anatomic, in providing a more complete view of the pathologic condition.