In this work, a cyclone spray chamber system is used in conjunction with an inductively coupled plasma-atomic emission spectrometer instead of the conventional Scott-type chamber system to reduce the lower limit of detection achieved by the instrument, and an internal standard element (Y) is introduced to eliminate the effects caused by the drift in the plasma background level. An ICP-AES method for the determination of 13 impurity elements in a highly pure platinum sample has been developed. In this method, it is not necessary either to add a platinum matrix to the calibration standard or to separate and concentrate the elements to be determined in the samples. The effect of the platinum matrix on the elements to be analyzed is corrected for by a background equivalent concentration subtraction method. The determination ranges of the method are as follows: 0.00010-0.0050% for Mg, Mn, Cu, Ag, Fe and Zn; 0.00030-0.015% for Au, Ir, Ni and Pb; 0.00050-0.025% for Rh and Al; and 0.00080-0.040% for Pd. The method is simple, rapid and accurate, and can be applied to the analysis of 99.9-99.995% pure platinum.